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How could the rich information stored in 
the parameters of trained neural networks 

be exploited?



Why?

NN Editing
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NN Synthesis
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Analysis/Interpretation

f(     )= • Generalization 
prediction 96%
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INR / NeRF Processing

• Classification 
• Editing 
• 3D generation

*Potential unified framework to handle different signals.
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         How can we  process and extract insights solely from the 
parameters of NNs?



         How can we  process and extract insights solely from the 
parameters of NNs?

Devise architectures that learn to process other neural 
architectures!



*aka Learning higher-order functions

(    )f     Dog= 



(    )f     = 
*aka Learning higher-order functions
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New paradigm: Datasets of NNs

.  
 . 
  .

Datasets of signals

Input

.  
 . 
  .

Output

Metanetwork **

* Dupont, Emilien, et al., ICML 2022 
**Lim, Derek, et al.,  ICLR 2024

*



Previous approaches

* Unterthiner, T. et al. 2020, De Luigi, L.,et al., ICLR (2023), Dupont, Emilien, et al., ICML 2022

1. Ignoring structure*: 
• Flatten weights • Jointly fitting INR embeddings with meta-learning techniques • etc.



Previous approaches

2. Equivariant - Structure aware**:

* Unterthiner, T. et al. 2020, De Luigi, L.,et al., ICLR (2023), Dupont, Emilien, et al., ICML 2022

• Construct linear equivariant layers to 
permutation symmetries. 

• Intricate weight-sharing patterns. 

• Cannot process varying 
architectures.

Non local

** Navon, A., et al. ICML 2023,  Zhou, A., et al. NeurIPS 2024,  Lim, D., et al. ICLR 2024, Kofinas, M., et al. ICLR 2024.
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Previous approaches

2. Equivariant - Structure aware**:

* Unterthiner, T. et al. 2020, De Luigi, L.,et al., ICLR (2023), Dupont, Emilien, et al., ICML 2022

• Treat NNs as graphs. 

• Process them with GNNs. 

• Can process varying architectures.

Non local Graph-based

** Navon, A., et al. ICML 2023,  Zhou, A., et al. NeurIPS 2024,  Lim, D., et al. ICLR 2024, Kofinas, M., et al. ICLR 2024.

• Construct linear equivariant layers to 
permutation symmetries. 

• Intricate weight-sharing patterns. 

• Cannot process varying 
architectures.

1. Ignoring structure*: 
• Flatten weights • Jointly fitting INR embeddings with meta-learning techniques • etc.



Symmetries.A:

Q: What makes NNs different from 
other modalities?

*Cohen, T., & Welling, M. ICML 2016, Zaheer, M., et al. NIPS 2017, Qi, Charles R., et al. CVPR 2017, Xu, K., et al. ICLR 2019,  Maron, H., et al ICLR 2019, Cohen, T. S., et al. ICLR 2018, Maron, H., et al.  ICML 

2020, Finzi, M., et al. ICML 2021, Veličković, P., et al. ICLR 2018, Fuchs, F., et al., NeurIPS 2020, Satorras, V. G. et al ICML 2021, Weiler M., et al. NeurIPS 2018

Pointnet GIN

Spherical CNN
PNA

GAT

SE(3)-Transformers3D Steerable CNNs

Equivariant Machine Learning

Deep sets

Inv. Graph Nets.
DSS

EMLP

EGNN

... and many many more

G-CNN



NN symmetries - Permutation
Hidden neurons do not possess any inherent ordering.



Hidden neurons do not possess any inherent ordering.

NN symmetries - Permutation



Are these the only symmetries 
within neural networks?

Previous works on neural network processing account only for the permutation symmetries.



Activation functions have inherent symmetries bestowed to the NN.

NN symmetries - Scaling

Sign symmetry 
(sine/tanh)

Positive Negative

sign flipping
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Putting them all together
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NN symmetries
Putting them all together
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sign flipping



Desired properties
• Invariant tasks: Our Metanetwork must be invariant to the permutation and scaling 

symmetries.

Map equivalent NNs to the same result.
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Desired properties
• Equivariant tasks: Our Metanetwork must be equivariant to the permutation and 

scaling symmetries.

Map equivalent NNs to equivalent NNs.
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Scale Equivariant Graph 
Metanetworks



ScaleGMN

• Follows the local approach. 

• Accounts for both permutation and scaling symmetries. 

• Extends the MPNN paradigm by designing scale equivariant MSG and UPD functions 
and a permutation and scale invariant READOUT function.

*which in various setups, are the only function-preserving symmetries.

*



Step 1: Graph Initialization (MLP)

1. Graph  

• Node    : neuron   , node features  

• Edge (  ,  ): weight, edge features  

2. Positional Encodings 

3. Linear initialization of features

Nodes and edges share same symmetries as 
biases and weights of input NN



Step 1: Graph Initialization (MLP)
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1. Graph  

• Node    : neuron   , node features  

• Edge (  ,  ): weight, edge features  

2. Positional Encodings 

3. Linear initialization of features

Nodes and edges share same symmetries as 
biases and weights of input NN



Step 2: Message Passing

• GNN layers are by construction permutation equivariant. 

• Hence, we only need to adapt the MSG, UPD and READOUT functions to 
account for the scaling symmetries.

GNN 
layer

GNN 
layer

GNN 
layer

...

READOUT



Achieving Scale Equivariance

ReScale 
Equivariant*

 ScaleInv

*when scaled by different multipliers

 ScaleEq  ReScaleEq

Scale 
Equivariant

Scale 
Invariant



ScaleGMN - 3 building blocks

1

**

 ScaleEq  ReScaleEq

Positive scale canon Sign canon Sign symmetrization**

Achieve invariance  
using either:

• canonicalization
• symmetrization

** Lim, Derek, et al. ICLR 2023
*when scaled by different multipliers
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ScaleGMN - 3 building blocks

**

1

 ScaleEq

 ReScaleEq

*when scaled by different multipliers
** Lim, Derek, et al. NeurIPS 2024

Scale 
Invariant

ReScale 
Equivariant*

Scale 
Equivariant

**Positive scale canon Sign canon Sign symmetrization**



ScaleGMN - 3 building blocks

Input vectors of the MSG are scaled by different multipliers:

The output should only be scaled by      .

*when scaled by different multipliers

}

central 
vertex

neighbor

}

edge

}

g

 ℓ ℓ − 1
     /

      /

     /

Scale 
Invariant

Scale 
Equivariant

ReScale 
Equivariant*



ScaleGMN - 3 building blocks

*when scaled by different multipliers

 ℓ ℓ − 1
     /

      /

     /

Scale 
Invariant

Scale 
Equivariant

ReScale 
Equivariant*

: equivariant to the product of the multipliers.

g



ScaleGMN - Bidirectional variant

In the forward variant vertices receive 
information only from previous layers:  

Detrimental, especially for equivariant tasks.

1. Add backward edges. 

2. Extend to ScaleGMN bidirectional  
(not straightforward due to multiple 
scalings).

Forward

Backward

Solution:



Theoretical outcomes

Proposition

ScaleGMN is permutation & scale equivariant. 

*under mild assumptions

Theorem *

Bidirectional ScaleGMN can simulate the forward and backward pass of any 
input FFNN.*



Experiments

1. INR Classification

ScaleGMN Dog

2. Generalization prediction

ScaleGMN 96%

3. INR Editing

ScaleGMN



Experiments

ScaleGMN

predicted 
class 
i.e. 8

≃

Invariant task

ScaleGMN outperforms all baselines, without resorting to additional techniques 
such as  probe features, advanced architectures or extra training samples.

non equiv.

first second third

perm. equiv.

perm. & scale 
equiv.

1. Classify INRs representing images.



Evaluate ScaleGMN on: 

1. Each symmetry individually (ReLU: positive scale, Tanh: sign) 

2. Heterogeneous activation functions

ScaleGMN

predicted 
accuracy 
i.e. 0.92

Invariant task
first second third

non equiv.

perm. equiv.

perm. & scale 
equiv.

2. Predict test accuracy of trained CNNs.

Experiments



• Bidirectional variant performs significantly better than the forward one. 

• Best test loss was achieved when increasing the depth of ScaleGMN-B. (validates previous theorem)

Equivariant task

ScaleGMN

≃

≃

first second third

non equiv.

perm. equiv.

perm. & scale 
equiv.

Experiments

3. INR Editing: Dilate digits of the MNIST INR dataset.



Takeaways

1. introduces a strong inductive bias: accounting for function-preserving scaling symmetries  
arising from activation functions. 

2. can be applied to NNs with various (heterogeneous) activation functions. 

3. enjoys desirable theoretical guarantees. 

4. empirically demonstrates the significance of scaling symmetries.

ScaleGMN:

Want to learn more? Find us in the poster session!

• Poster Session 5  
• Poster #3010


